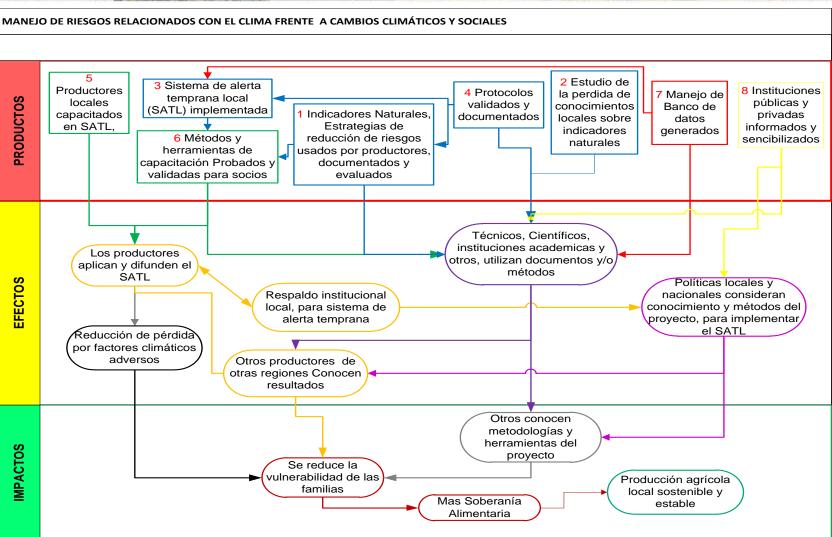
UNIVERSIDAD MAYOR DE SAN ANDRES

FACULTAD DE AGRONOMIA-UNIVERSIDAD DE MISSOURI

PROYECTO:

MANEJO DE RIESGOS RELACIONADOS AL CLIMA EN FUNCION A ESTRUCTURAS SOCIALES

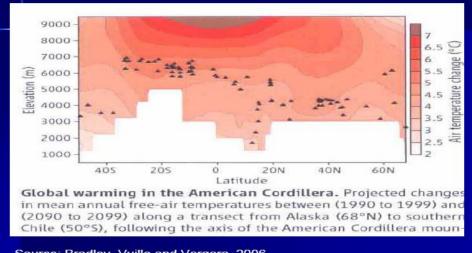
Magalí Garcia, Jere Gilles, Edwin Yucra

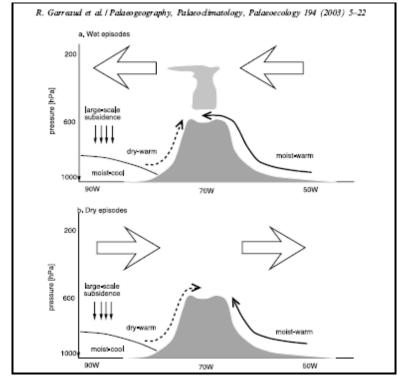

Objetivo:

•Evaluar objetivamente el uso y manejo de estrategias locales para lidiar con el Cambio y la variabilidad climática en el tres ecosistemas andinos.

Concepto:

•Determinar qué parte de los conocimientos locales puede ser útil para luchar contra la variabilidad climática y cuales son los factores para su pérdida.

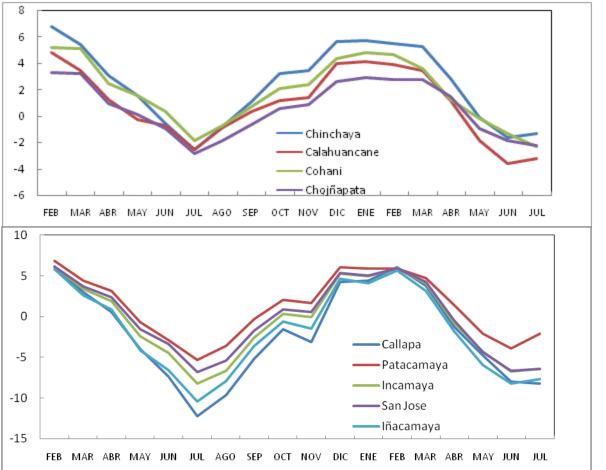


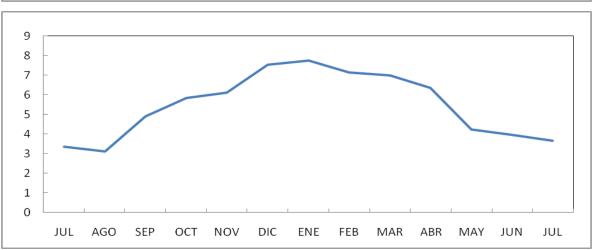


EN LOS ANDES ANDES BOLIVIANOS ELEVADA VULNERABILIDAD Y VARIABILIDAD FISICA LOCAL

Temperature in the Andes is increasing faster than at sea level, affecting mountain habitats and water cycles

Source: Bradley, Vuille and Vergara, 2006


RESULTA EN UNA ELEVADA Y MUY VARIABLE VULNERABILIDAD PRODUCTIVA LOCAL



PARAGUAY

ARGENTINA

Cuencas andinas, representan una fuerte variabilidad fisiográfica y elevada dependencia de los recursos hídricos de los glaciares

Las cuencas andinas (muchas microcuencas), son difíciles de representar por fuerte SU variabilidad fisiográfica que las hacen casi irreproducibles por Modelos y que requieran respuestas específicas para responder a la vulnerabilidad.

Mandato constitucional a las Universidades

Sección II. Educación Superior

Artículo 91. I. La educación superior desarrolla procesos de formación profesional, de generación y divulgación de conocimientos orientados al desarrollo integral de la sociedad, para lo cual tomará en cuenta los conocimientos universales y los saberes colectivos de las naciones y pueblos indígena originario campesinos.

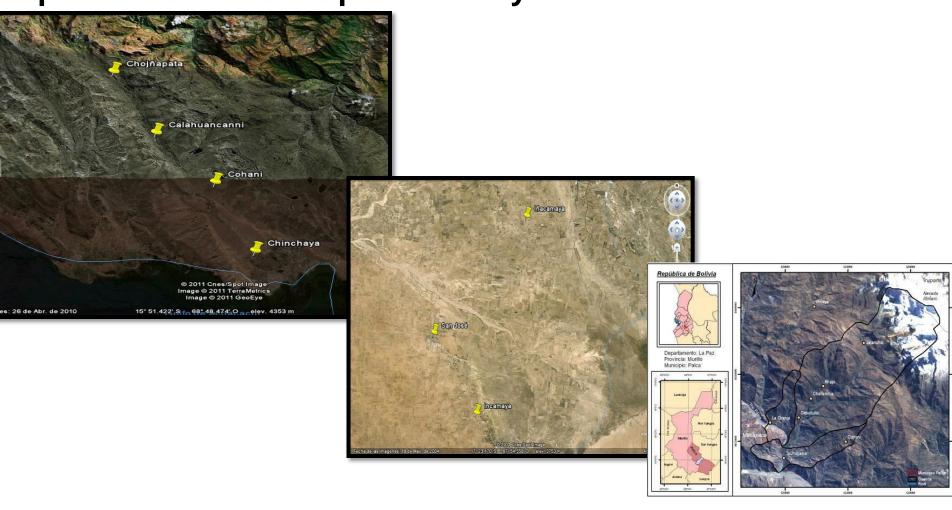
3. Propuestas estratégicas

Lineamiento Estratégico Madre Tierra, Ley Avelino Siñani).

Crear y promover centros de entrenamiento para socializar y recrear estos conocimientos en el ámbito local (formando nuevas generaciones, jóvenes y niños/as).

Incorporar los saberes locales y conocimientos ancestrales y la sabiduría de las NIOC como parte de proyectos y programas de GM, Gobernaciones, Ministerios, Universidades y otras instituciones (ahora, no él 2025).

Subtemo


Políticas, marco regulatorio y acciones para el desarrollo y fortalecimiento de capacidades locales.

Actores

Sector productivo
Empresa
Gobierno
Organizaciones sociales
Universidad

METODOLOGIA

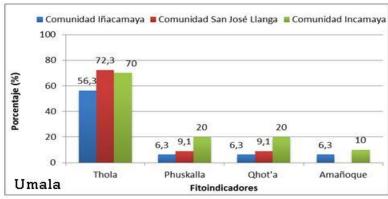
Se trabajó en tres cuencas andinas que muestran a parte de la realidad productiva y climática.

METODOLOGIA

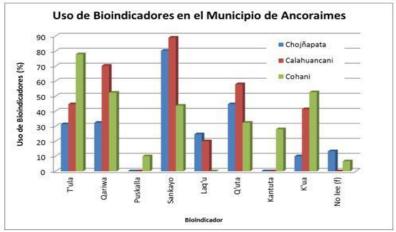
El trabajo se dividió en levantamiento de la siguiente información :

Información socio productiva: A través de encuestas, talleres, entrevistas a informantes claves, etc. La actividad principal fue el seguimiento diario de vida con los agricultores durante las épocas agrícolas. Con esto se obtuvo la siguiente información:

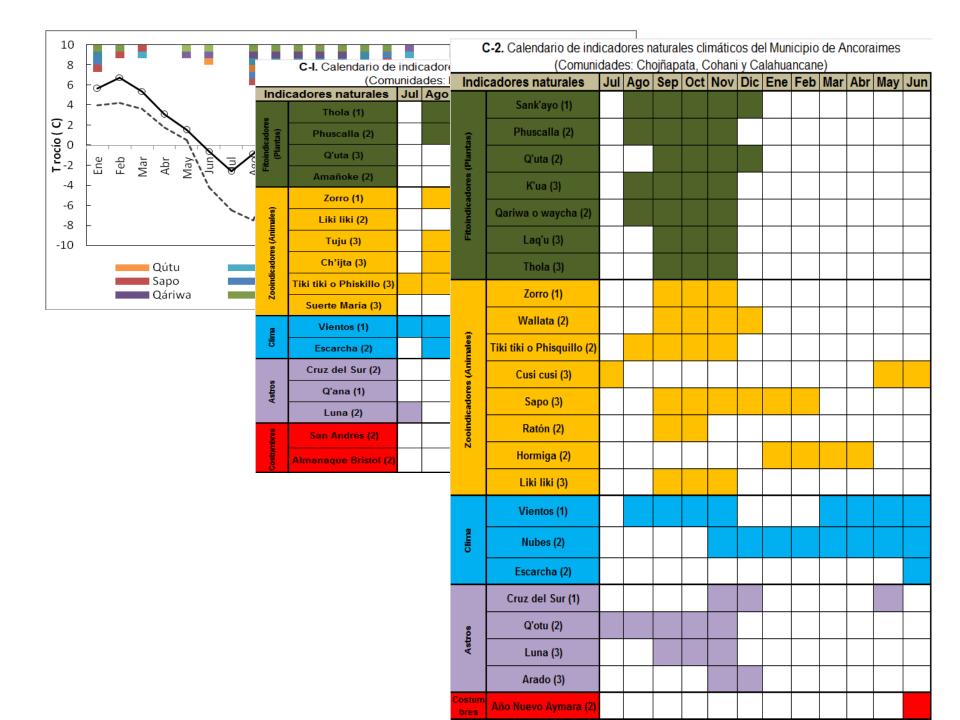
- 1. Se levantó un censo de los indicadores climáticos observados y su uso, importancia y confiabilidad relativa en función de la zona de trabajo y del tipo de agricultura.
- 2. Se registró el momento de la expresión de los indicadores.
- 3. Se evaluó la estructura productiva de los sistemas productivos y sus cambios.
- 4. Se analizaron las implicancias económicas de las nuevas estructuras productivas.


METODOLOGIA

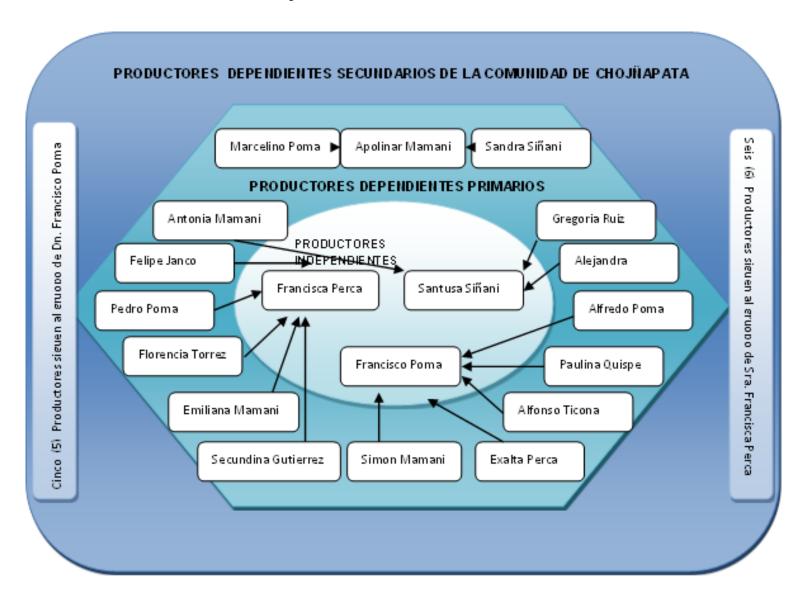
Información agroclimática:


- 1. Se instalaron estaciones agrometeorológicas en todas las comunidades y se registró en forma diaria las variables meteo más importantes.
- 2. Se identificó estaciones meteorológicas cercanas con registros largos y validados para ubicar las zonas en su entorno climático.

(



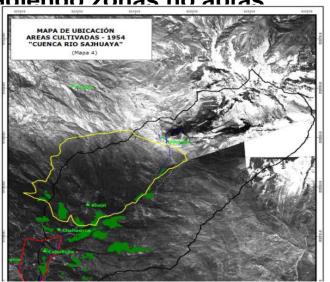
En Ancoraimes y Umala, el uso de indicadores es muy amplio, pero en Palca, casi ha desaparecido.

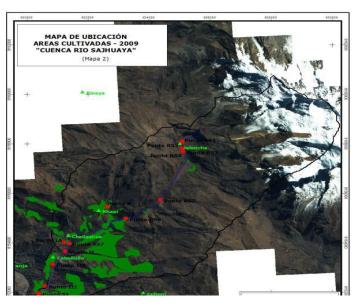

Registro, sistematización y expresión de los indicadores climáticos locales:

Luego de dos años de seguimiento se obtuvo una sistematización de los indicadores observados por los agricultores, su importancia relativa y su momento y/o forma de expresión. Esto se encuentra en una publicación y un calendario de expresión.

La evaluación mostró que los indicadores (especialmente los bioindicadores) concentran su expresión en cinco meses, respondiendo a las condiciones ocurrentes a partir del inicio de invierno, intensificándose a medida que se acerca la primavera.

La transmisión y el uso del conocimiento depende de una red y de la transmisión verbal


Pero este conocimiento esta siendo reducido fuertemente por diferentes razones, poco ligadas con el clima. En Ancoraimes y Umala, todavía se observan pero menos que antes. En Khapi (Illimani), no se observan.


Porcentaje de participantes que identificaron cada factor, dentro de su percepción, que ha contribuido a la pérdida de indicadores

Ancoraimes		Umala			
Migración	56.7%	Desinterés	26,7%		
Desinterés	33.3%	Mecanización	22%		
Acceso a terreno	13.3%	Variabilidad climática	20,2%		
Minifundio	11.7%	Extensión parcelas	15,6%		
Variabilidad climática	8,3%	Vocación ganadera	8,7%		
Variabilidad pronostico.	5%	Migración	6,7%		
Olvido	5%	Variabilidad pronostico	6,7%		

Se identificaron los cambios en los sistemas productivos identificándose que el cambio puede implicar ampliar el área producida,

incluso invadiendo zonas no antas ·

CULTIVO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO
PAPA		DESCANSO		SIEMBRA		FLORACION	LECHOSO	MASOSO	COSECHA	DESCANSO		
MAIZ				SIEMBRA		FLORACION	LECHOSO	MASOSO	COSECHA			

Asimismo, para estas comunidades, la estructura productiva en 2009-2010 es la siguiente:

CULTIVO	JULIO	AGOSTO	SEPTIEM.	OCTUBRE	NOVIEM.	DICIEM.	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO
					FINAL							
PAPA	SIEMBRA		FLORACION	TUBER.	TUB.	COSECHA	COSECHA					
LECHUGA								TRANSPLANTE			COSECHA	
MAIZ				SIEMBRA		FLORACION	LECHOSO	MASOSO	COSECHA			
HABA		COSECHA								SIEMBRA		

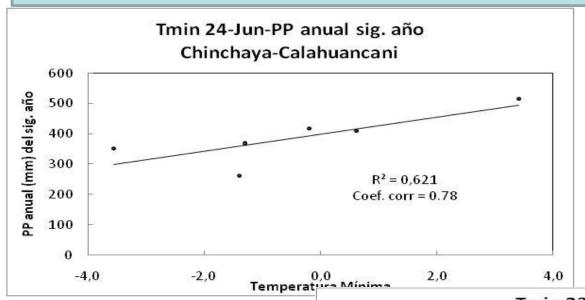
O mantener el área producida pero con mayor intensificación.

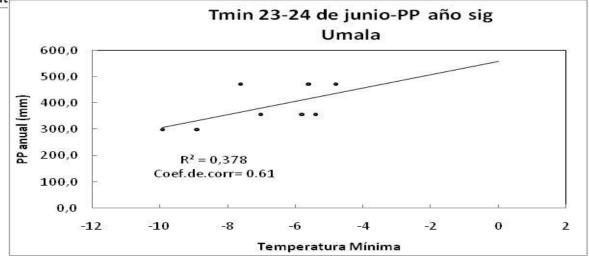
Comunidad/aultiva		COSTOS		I	NGRESOS	
Comunidad/cultivo		Costos A	Costos B	•	Ingresos A	Ingresos B
	Total costos	9.300	2.840	Total Ingresos	13.200	10.400
Chojñapata/papa	Rentabilidad				3.900	7.560
	Relación Beneficio	- Costo (B/C)		1,4	3,7	
	Total costos	6.874	2.290	Total Ingresos	13.300	8.340
Calahuancane/papa	Rentabilidad				6.426	6.050
	Relación Beneficio	- Costo (B/C)			1,9	3,6
	Total costos	6.874	2.290	Total Ingresos	13.300	8.340
Cohani/papa	Rentabilidad				6.426	6.050
	Relación Beneficio	- Costo (B/C)			1,9	3,6
	Total costos	10.700	6.730	Total Ingresos	40.000	40.000
Cohani/arveja	Rentabilidad				29.300	33.270
	Relación Beneficio	- Costo (B/C)			3,74	5,94
	Total costos	9.420	5.020	Total Ingresos	15.580	11.540
Chinchaya/papa	Rentabilidad				6.160	6.520
	Relación Beneficio	- Costo (B/C)			1,7	2,3
	Total costos	15.930	8.170	Total Ingresos	38.400	38.400
Chinchaya/cebolla	Rentabilidad				22.470	30.230

Comunidad/cultivo	COSTOS	INGRES	RESOS		
	Total costos	15310	Total Ingresos	39.040	
Khapi/papa	Rentabilidad			22.070	
	Relación Beneficio – Costo (B/C)		2,5		
	Total costos	7.065	Total Ingresos	15.000	
Khapi/maíz	Rentabilidad			7.935	
	Relación Beneficio – Costo (B/C)			2,1	
	Total costos	16.787	Total Ingresos	36.250	
Cebollullo/maíz	Rentabilidad			19.462	
	Relación Beneficio – Costo (B/C)			2,2	
	Total costos	23.500	Total Ingresos	77.000	
Cebollullo/lechuga	Rentabilidad			53.500	
	Relación Beneficio – Costo (B/C)			3,3	
	Total costos	31.650	Total Ingresos	192.500	
Tahuapalca/lechuga	Rentabilidad			160.850	
	Relación Beneficio – Costo (B/C)			6,1	

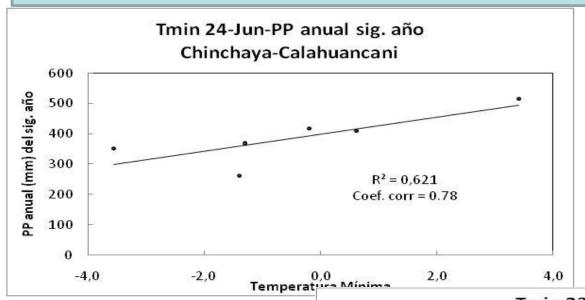
SISTEMAS DE RIEGO INTENSIVOS DE LECHUGA

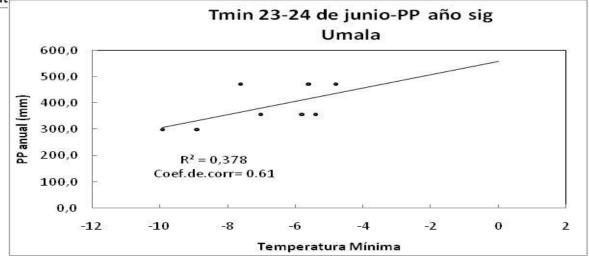
Lechuga B/C = 6 Maiz y papa = 2

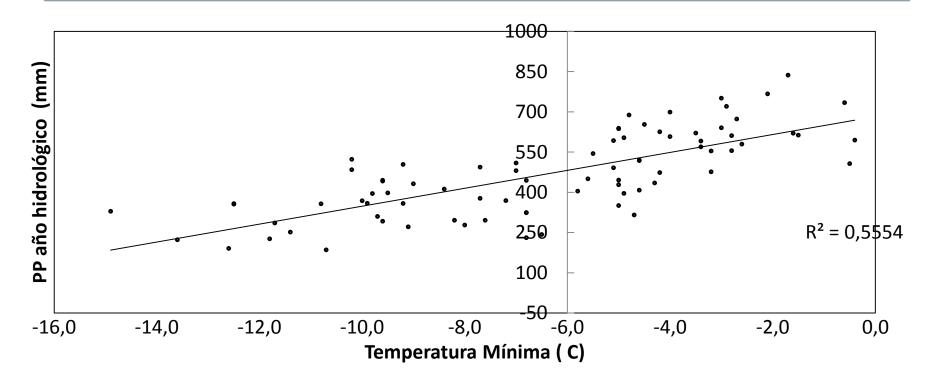

VALIDEZ DE LOS INDIOCADORES LOCALES


Aunque los indicadores se mostraron muy eficientes, también se constituyen en poco extrapolables pues el análisis de su expresión es altamente subjetivo.

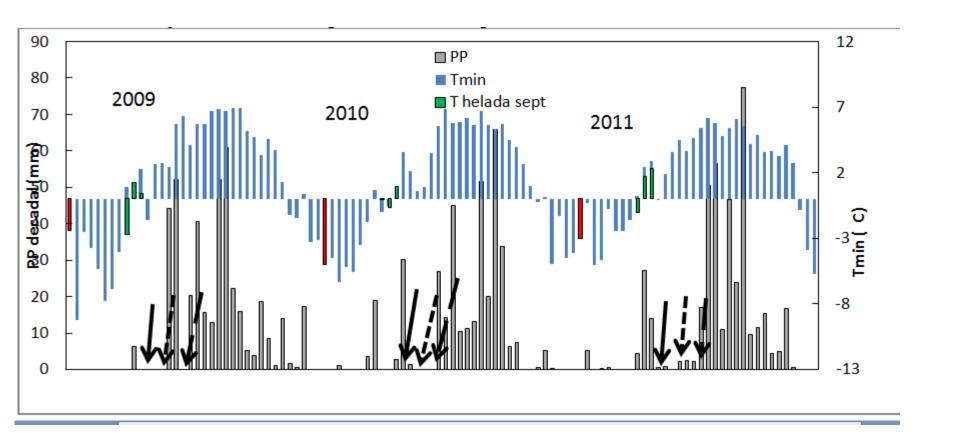
Se seleccionaron algunos que podrían ser analizados más numéricamente.


Aquí se presentan la expresión de la temperatura mínima del solsticio de invierno y de la floración del la p´uskalla.

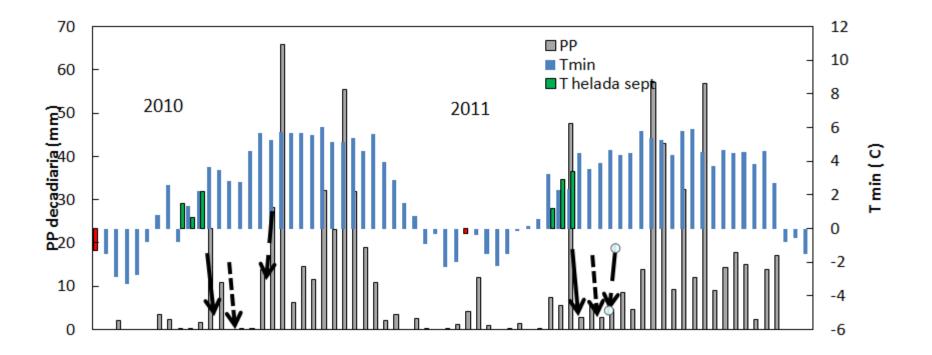

Correlación de las observaciones locales con lo ocurrido meteorológicamente en las zonas de estudio



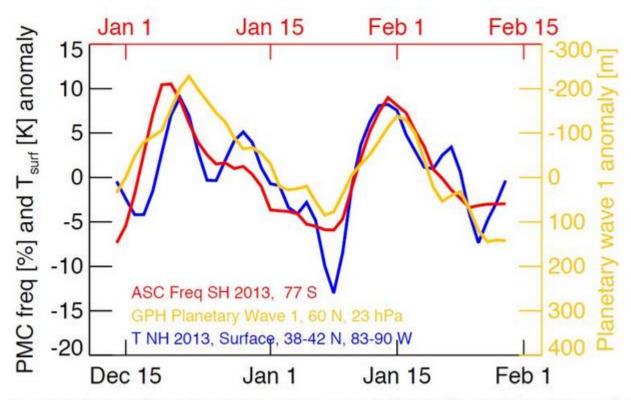
Correlación de las observaciones locales con lo ocurrido meteorológicamente en las zonas de estudio



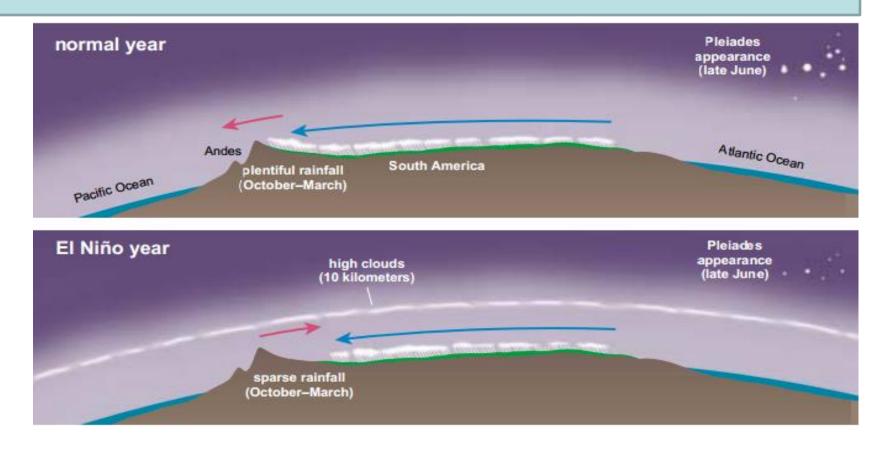
Correlación de las observaciones locales con lo ocurrido meteorológicamente en otros observatorios meteorológicos



Relación Tmin y precipitación recibida en el siguiente año hidrológico en 3 observatorios meteorológicos del Altiplano Central y del Altiplano Norte de Bolivia


Correlación de las observaciones locales con lo ocurrido meteorológicamente en otros observatorios meteorológicos

Correlación de las observaciones locales con lo ocurrido meteorológicamente en otros observatorios meteorológicos



Posibles explicaciones: Teleconexiones?

Figure: Changes in surface temperatures near Indianapolis, IN (blue, left and bottowell correlated with changes in the Arctic stratosphere (orange, right and bottom schanges in noctilucent clouds (PMCs) at 77°S latitude two weeks later (red, left an

Posibles explicaciones: Teleconexiones?

Esquema propuesto por Orlove et al. (2002) para explicar la reducida visibilidad de las Pleyades en el Este de los Andes. Obsérvese la reducida nubosidad que arriba al Altiplano

CONCLUSIONES

- El nivel de uso de los indicadores climáticos por parte de los productores andinos tiene una fuerte correlación con el acceso a los recursos.
- Las razones para su pérdida, no están en la falta de expresión, sino la pérdida de la habilidad para observarlos que resulta de varios factores socio-económicos, siendo el clima menos importante para ello.
- La nueva estructura económica del sistema productivo está reduciendo la posibilidad de incluir costos ocultos y ello llevará a mayores costos de los productos.
- Los indicadores climáticos locales muestran un elevado nivel de validez meteorológica, basada en la estructura atmosférica, pero deben ser más estudiados y en más zonas.

GRACIAS