A EFECTIVIDAD DE LOS BIOFOLARES CON REDUCTORES LA CAMUNIDADES EN SEIS COMUNIDADES DE LA LITELANO

Belle of Pheno 10/07/2019

Alternativa

Bioinsumos: abonos naturales sólidos y líquidos

Abonos foliares (AF): suministran:

- Alto contenido de macro y micronutrientes (N, P, K, Ca, Mg, S, Fe, Cu, Zn).
- Hormonas vegetales y otras sustancias beneficiosas para mejorar los procesos fisiológicos y bioquímicos.
- Nutrientes absorbidos por las plantas, 20 veces más rápido por las hojas que por las raíces, porque proporcionan hormonas promotoras del crecimiento.

Resultados:

- Incremento altura de plantas y número de macollos.
- Mejores rendimientos.
- Control de plagas.
- Tolerancia a la sequía
- Recuperación del shock de daños por granizo u otros extremos climáticos.

Depende de la especie, dosis, frecuencia de aplicación y etapa de crecimiento de la planta (X) (Dhanoji SMM veta allai 2018) Phanoji, 2018)

PLANTEAMIENTO DE LA INVESTIGACION

Pese a experiencias empíricas en el uso de estos bioinsumos, específicamente los biofoliares, son aún insuficientes los datos que expliquen

¿qué tan efectivos son los biofoliares para resolver problemas productivos en diferentes contextos?

FAO, 2013: agricultores deben tener acceso a información validada y sólida, producto de la investigación participativa sobre calidad, inocuidad y estabilidad bioquímica de los biofermentos, para que sean recomendados para su elaboración y puedan ser usados en complemento con otras prácticas culturales (FAO, 2013).

METODOLOGÍA

Caracterización bioles y bioinsumos a. Grupo focal de expertos locales

b. Encuestas

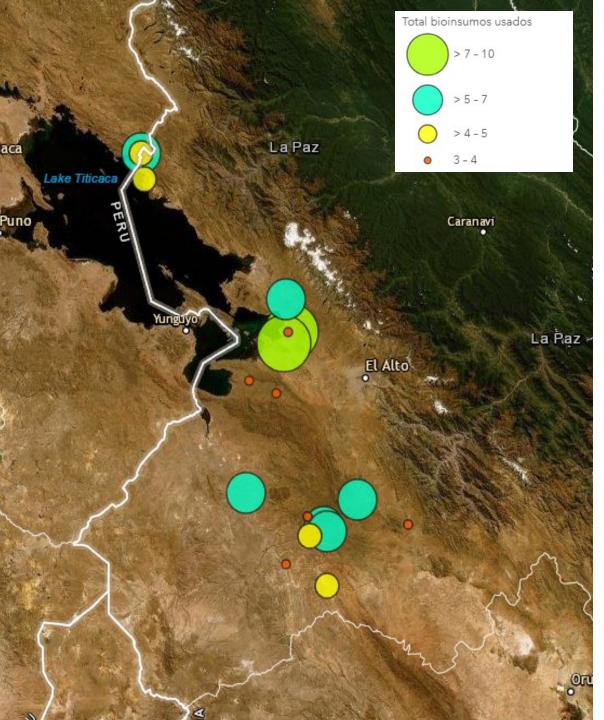
N = 21

Objetivo 2: bioles

Estudio efectividad bioles

2 campañas agrícolas 2018/2019-2019/2020

Recomendaciones y mecanismos de usos

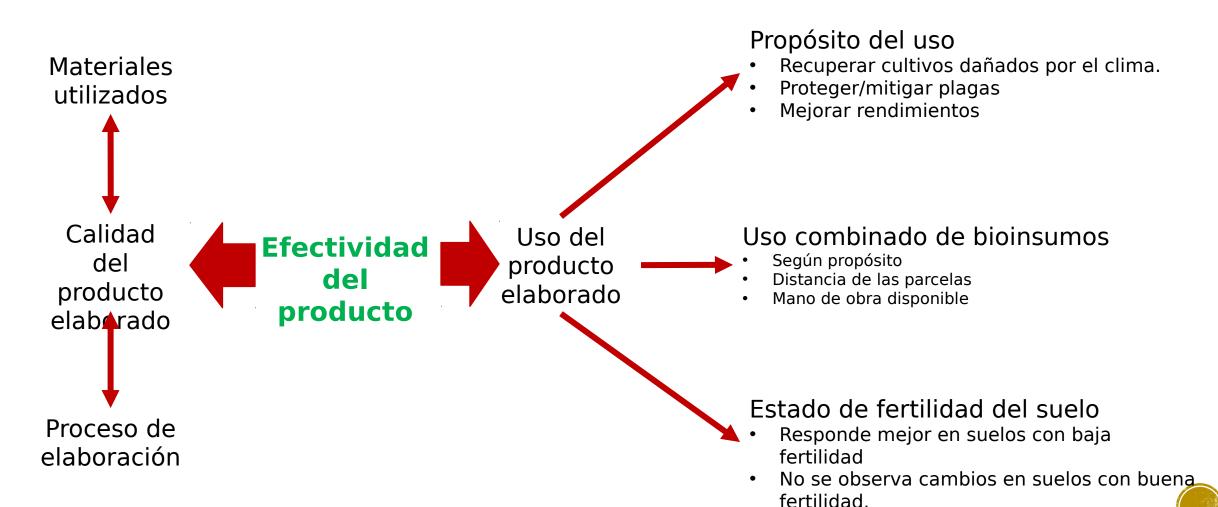

RAI comunales en 6 comunidades

Negociar el diseño de los experimentos según contexto y necesidades

DISCUSIÓN CON EL GRUPO FOCAL EN TORNO A LA EFECTIVIDAD DE LOS BIOFOLIARES:

Aprendizajes:

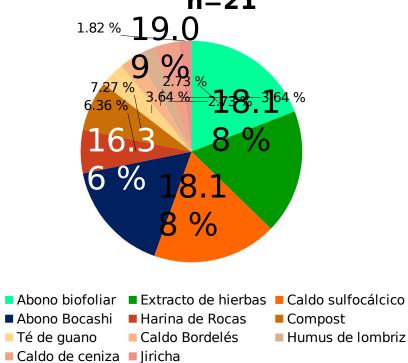
- 21 Yapuchiris: 14 H y 7 M de 17 comunidades.
- Experiencia en manejo de bioinsumos:

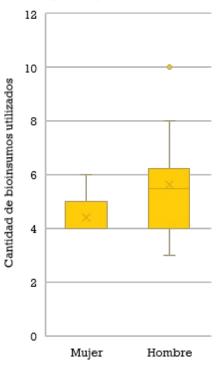

Promedio: 7.5 años

Mínimo: 3 años

Máximo: 15 años

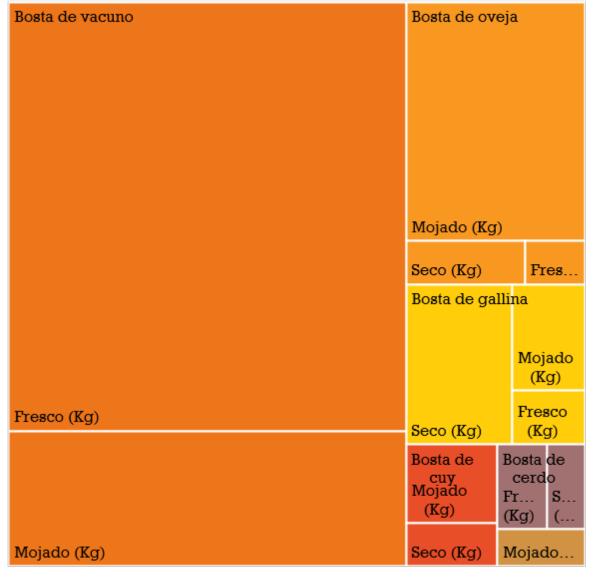
- Cada uno maneja diferentes tipos de bioinsumos.
- Elaboración aprendida con proyectos e intercambios de experiencias, y adaptada a sus contextos y necesidades.
- Esfuerzo en elaboración: 90% indica que requiere un esfuerzo REGULAR y un 10% MUCHO esfuerzo.
- En costos: 95% considera que NO son caros frente al costo de los químicos ("es económico")

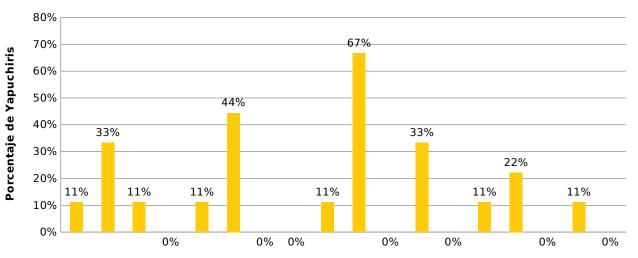

DISCUSIÓN CON EL GRUPO FOCAL EN TORNO A LA EFECTIVIDAD DE LOS BIOFOLIARES:

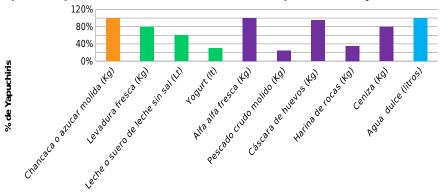

Tipos de bioinsumos utilizados

12 10 Número de bioinsumos ■ Abono biofoliar ■ Extracto de hierbas ■ Caldo sulfocálcico ■ Abono Bocashi ■ Harina de Rocas Compost Té de guano ■ Caldo Bordelés Humus de Iombriz ■ Caldo de ceniza Iiricha

Manejo de bioinsumos (%) n=21

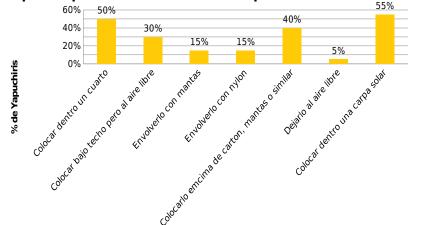

Uso de bioinsumos por género


- 11 tipos de bioinsumos identificados.
- 4 bioinsumos son los mas utilizados: biofoliar, extracto de hierbas, caldo sulfocálcico y bocashi.


DE LOS MATERIALES: Tipos de estiércol utilizados para biofoliares (Kg)

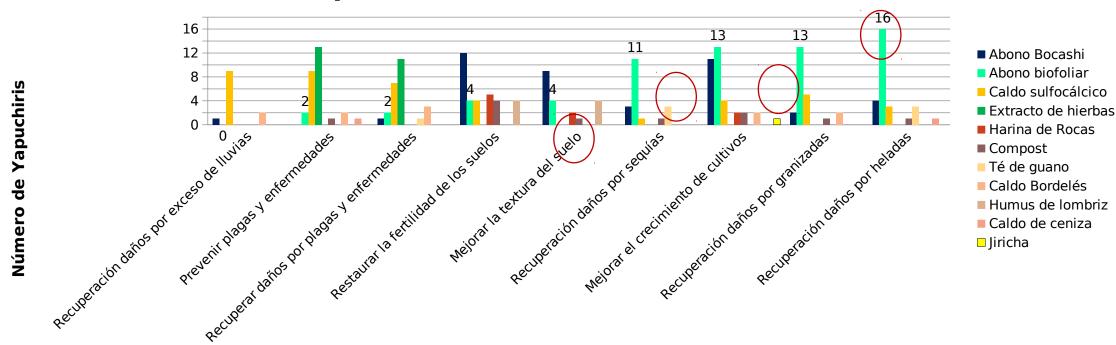
%Yapuchiris que emplean diferentes tipos de estiércol

% Yapuchiris que emplean diferentes materiales para coadyuvar la fermentación



- Uso de diferentes tipos de estiércol y estados (fresco, mojado, seco)
- Estiércol de vacuno fresco es el mas utilizado (viabilidad microorganismos).
- Adaptación de estiércol mojado y seco de otros animales menores; probable afectación en la población de microorganismos para el proceso de fermentación; influencia en calidad y efectividad de los biofoliares.
- Calidad del biofoliar puede ser influido con la incorporación de insumos adicionales para una menor o mayor cantidad de macroputrientos microputrientos pel CE fitobormonas y

DEL PROCESO:


% de Yapuchiris que emplean diferentes medios para hacer fermentar los biofoliares

- Con el grupo focal se estableció y construyó el proceso estándar de elaboración de biofoliares en 12 pasos.
- Los resultados muestran que existe un proceso relativamente estándar en la preparación de los biofoliares, a excepción del paso 1 (si la bosta está seca, remojar una noche antes) y paso 12 (almacenar en botellas PET).
- En el proceso de fermentación se utiliza diferentes medios para facilitar la fermentación de los digestores que contiene la mezcla del biofoliar.
- Estas formas pueden afectar la temperatura constante de la fermentación y por ende la calidad del producto final.

Propósitos de uso de los bioinsumos

- 9 propósitos de uso de los bioinsumos vinculados a la recuperación de daños climáticos, por plagas, y mejorar el rendimiento de los cultivos.
- Biofoliar puede ser aplicado para usar ante situaciones de estrés climático por heladas, granizadas y sequías y también para mejora rendimientos; mientras que combinado con caldo sulfocálcico y extracto de hierbas son para situaciones de prevención y mitigación de daños por plagas y también del clima.

Análisis de pH y CE en muestras de biofoliares

Dpto	Municipio	Comunida d	Yapuchiri	Tipo de guano principal	pH (pH metro)	pH (papel pH)	pH Lab. IBTEN 2011
La Paz	Caquiaviri	Suramaya	Mamani Fabián Juan	Vaca	4,74	5	7.75
La Paz	Santiago Callapa	Centro Yaribay	Franco Constantino	Oveja	4,87	6	7.66
La Paz	Waldo Ballivián	Viloco	Ortega Miguel	Vaca	6,55	7	7.75
La Paz	Puerto Acosta	Pasuja Belén	Mamani Villca Edberta	Vaca	6,85	7	7.75
La Paz	Tiahuanac u	Yanarico	Chipana Camargo Maritza	Vaca	7,14	7	7.75
La Paz	Caquiaviri	Villa Anta	Fabián Estanix	Vaca	4,67	5	7.75
La Paz	Huarina	Coromata Baja	Pusarico Choque Ramón	Vaca	5,06	5	7.75

Análisis de 7 muestras de biofoliares, respecto de pH:

- Rango del pH es variable entre 4.67 a 7.14,
- Comparación preliminar con datos obtenidos por el laboratorio de IBTEN (2011), muestra que los pH están relativamente cercanos en el rango.

DEL ESTABLECIMIENTO DE LOS TRATAMIENTOS CON CADA RAI:

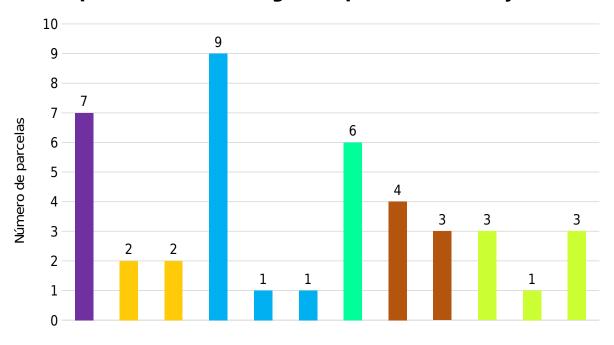
- Cultivo de investigación consensuado: la papa.
- La unidad experimental del agricultor no es un lugar especial ni distinto de las parcelas que trabaja.
- La parcela de investigación (UE) se dividió en dos partes:
- Las repeticiones son cada agricultor investigador de la RAI comunal.
- Aplicación de los tratamientos concertados con la RAI en función de las necesidades o eventos gatillantes, una situación de estrés que ocurra sobre el cultivo y requiera la aplicación del tratamiento.
- Seguimiento del desempeño del tratamiento en la parcela experimental.

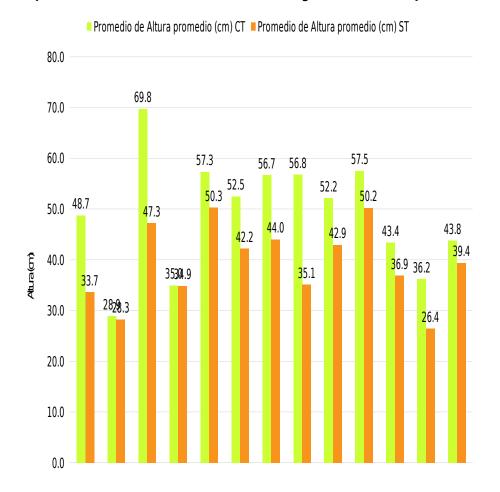
Tratamientos	Dosis de b mod	Eventos				
iratamientos	1ra aplicación	2da aplicación	3ra aplicación	gatillantes		
1. Biofoliar (Bf)	2	2	2	Mejorar rdtoHelada		
2. Biofoliar (Bf) + Extracto de Hierbas (EH)	2 Bf + ½ EH	2 Bf + 1 EH	2 Bf + 1 EH	• Plagas		
3. Biofoliar (Bf) + Extracto de Hierbas (EH) + Caldo Sulfocálcico (CS)	2 Bf + ½ EH + ¼ CS	2 Bf + 1 EH + ½ CS	2 Bf + 1 EH + ½ CS	HeladaGranizadaPlagas		

Variables

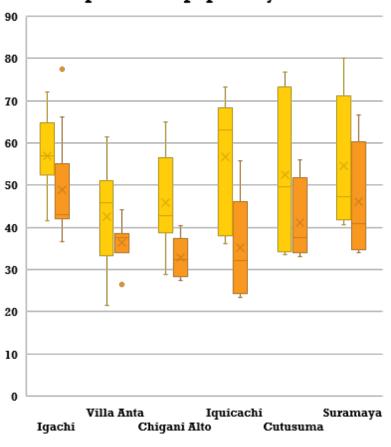
- Altura de plantas
- Rendimiento

Covariables


- Fertilidad de los suelos de las parcelas.
- Evento gatillante (helada, granizada, plaga)
- Incidencia de plaga (gorgojo)
- Percepción cualitativa de cambios.


RESULTADOS PRELIMINARES: 1RA CAMPAÑA AGRÍCOLA

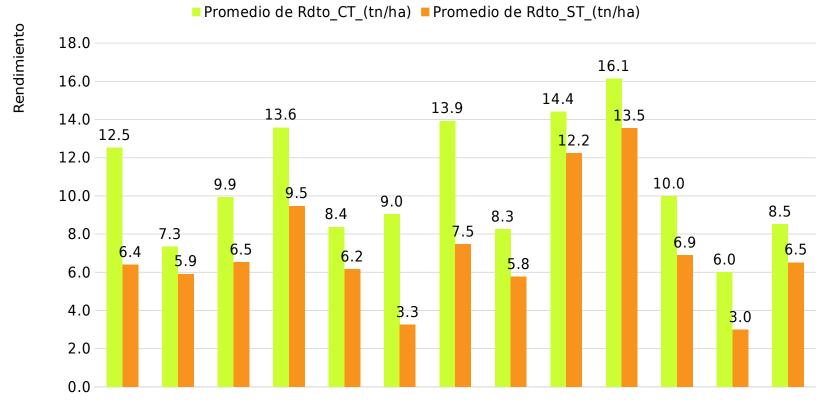
Número de parcelas de investigación por comunidad y tratamiento



De 47 investigadores que iniciaron las RAIs culminaron 42 (89%), 15 mujeres 27 hombres con todo el registro de sus datos.

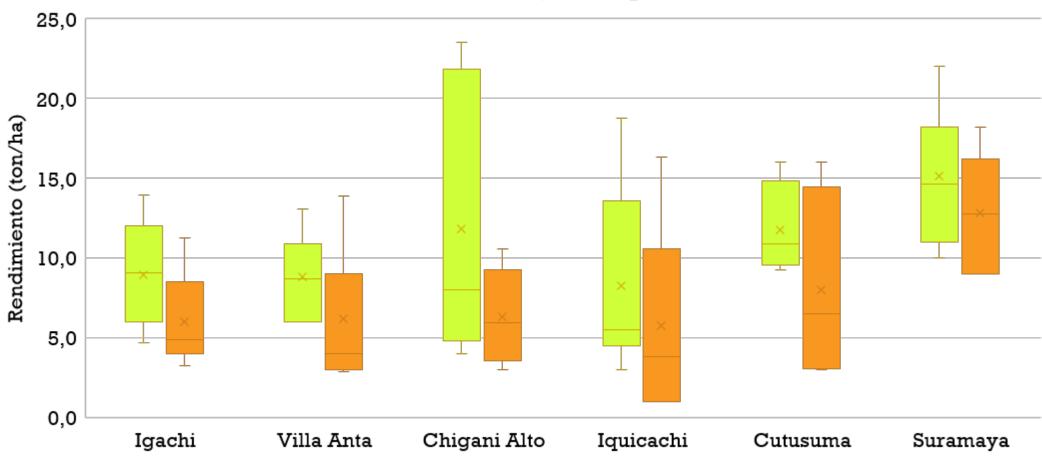
Altura máxima promedio de plantas (cm) alcanzada en la fase fenológica de floración por tratamiento y evento gatillante

Altura máximo promedio (cm) de plantas de papa CT y ST


El efecto en la altura de las plantas con CT es superior a las ST. Además según la percepción general de las parcelas CT, las hojas son gruesas y de color verde oscuro

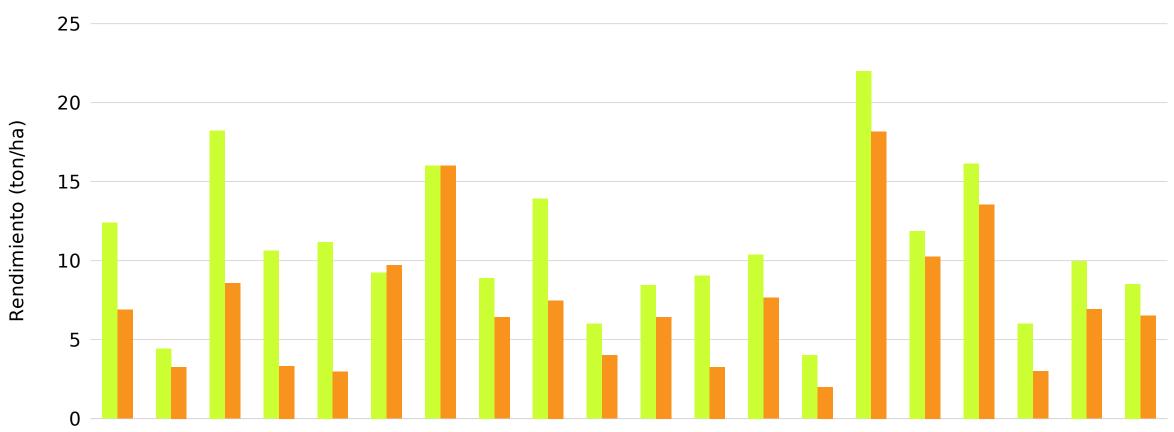
RESULTADOS PRELIMINARES: 1RA CAMPAÑA AGRÍCOLA

Rendimiento (ton/ha) por comunidad, tratamiento y evento gatillante

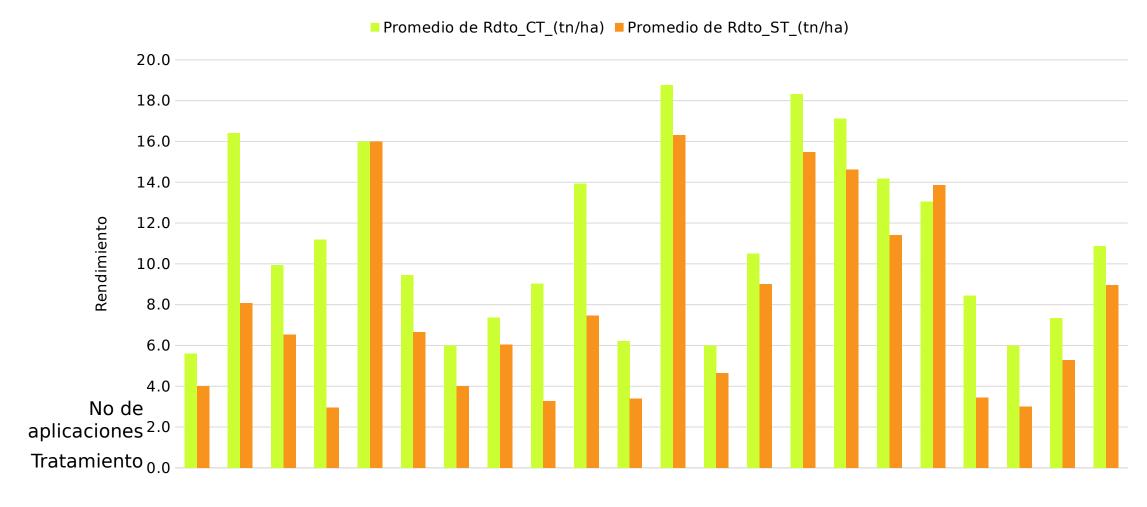

RAIs variaron la implementación de los tratamientos según evento gatillante.

Algunas RAI tuvieron dos eventos gatillantes.

Rendimientos CT superiores a los ST.

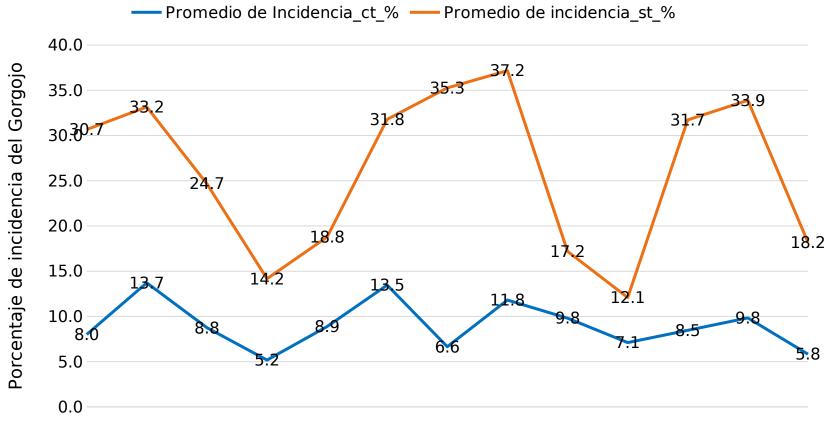

Dinámica de rendimientos (ton/ha por RAI comunal

Rendimientos (ton/ha) por comunidad, tratamiento y por fertilidad del suelo


■ Promedio de Rdto_CT_(tn/ha)
■ Promedio de Rdto_ST_(tn/ha)

Rendimientos variables en función de la fertilidad de los suelos (percepción).

Rendimiento (ton/ha) por número de aplicaciones de los tratamientos



Rendimientos variables en función del número de aplicaciones. Ligero incremento de rendimiento cuando es 2 y 3 aplicaciones.

Dinámica de la incidencia del Gorgojo en %

Las RAIs de las 6 comunidades, apreciaron en general, el efecto positivo de reducción de pérdidas de la incidencia de la plaga del Gorgojo respecto del rendimiento.

RESULTADOS DE LABORATORIO (IIDEPROQ-UMSA, 2019)													
PARAMETRO	UNIDAD	Dhanoji MM, (2018)		=	Medin a et al (2014)	es et	CATACO RA		M-3 CHIGANI ALTO (Biol)	M-4 IQUICAC HI (Biol)	M-7 VILLA ANTA (Biol)	M-8 SURAMA YA (Biol)	MÉTODO
рН		7,07	,	7	7,23		4,51	7,09	5,51	4,86	5,8	4,18	pH-métrico
	uS/cm			14400 - 15400			5499						Conductivimétrico
Alcalinidad Total	mgCO3/L	800)				740	360	1384	853	562	2 223	SMWW-2320B
Carbono Orgánico Total	mgTOC/L				1800		273	39	226	174	205		HACH-10128
Nitrogeno Total	mgNtot/L	770	1170	996.6-1094.5	321		197,65	152,35	140	41,18	131,76		HACH-10031 Salicylate Method
Nitratos	mgNO3/L						96	89	120,5	99,5	88		
Nitritos	mgNO2/L						3	3,5	2,5	2	4,5	2,5	HACH-8507 Diazotizacition
Fósforo Total	mgPtot/L	166	300	224.0 - 225.7	55,4		7,4	4	4	5,6	1,2	2,2	HACH-10127 Molybdovanadate
Fosfatos	mgPO4/L						22,6					6,6	HACH-10127 Molybdovanadate
Sodio	mgNa/L			922,4		590	613	351	. 178,5	1397,5	599	403,5	EPA273.1
Potasio	mgK/L	126		2692.4- 2930.8	1993		160						EPA258.1
Calcio	mgCa/L		1000	1132			574,75						EPA215.1
Magnesio	mgMg/L	20,2		544,4	243		338	<u> </u>					EPA242.1
Hierro	mgFe/L	29,71				280,45		<u> </u>					SMWW-3500Fe.B
Cobre	mgCu/L					2,4							SMWW-3500Cu.B
Boro	mgB/L					7,8	1,18	1,57	2,71	. 3,91	3,3	3,2	SMWW-4500-B.B

APRENDIZAJES

- RAI: Participación voluntaria y representativa de agricultores según distintas zonas productivas de la comunidad.
- Participantes se consideran como investigadores aprendices que presentarán su experiencia a la comunidad, sin ser "juzgados por los resultados" (... las pruebas pueden resultar o no funcionar bien...).
- Esta primera campaña permite entender que la aplicación de tratamientos responde ante situaciones de necesidad por evento gatillante (clima y plagas).
- Los resultados obtenidos permitirán orientar la investigación de la segunda campaña agrícola de manera mas específica, para profundizar otros aspectos que hacen a la toma de decisiones del uso de los bioinsumos y biofoliares.

Investigacione s e innovaciones: Prueba error reflexión Núcleos de investigació n e innovación: Testigo+Registro de datos

RAI:
Testigo+U.
Exp+Repet
iciones
+Registro
de
Datos+Aná
lisis y
reflexiones
en la RAI

